GOURDON/GEOM Parallelization Progress and Outlook

Hayden McGuinness
Don Steiner

Rensselaer Polytechnic Institute

In collaboration with
T.K. Mau and A. Grossman
Code System

- **Input**
 - Coil Currents
 - Mass Profile

- **GRID**
 - Vac. Field

- **GOURDON**
 - Field lines

- **DESCUR**
 - Fouri. app. LCMS

- **ORBITZ3D**
 - Particle dist.
 - Alpha Loss

- **VMEC**
 - Plasma Equil.

- **GOURDON**
 - Field lines
 - Guiding Centers

- **MFBE**
 - Mag. Field

- **Data**
 - Footprints / Heat Loads

- **GOURDON**
 - Lines/Centers on Plates, Surfaces

- **GEOM**
 - Geometry

- **ORBITZ3D**
 - Plasma Equil.

- **MFBE**
 - Mag. Field

- **Data**
 - Footprints / Heat Loads
GEOM Summary

- Input geometry of Device
- Outputs “Tagged Map”
- Used by GOURDON for speed
- GOURDON calculates intersection
New GOURDON

- Parallelization (mostly) complete
 - Compare important quantities with serial
 - Ran 100 lines

- Ability to trace guiding centers
 - Important if Analytic Heat Load model fails

$$T_{et} \propto L_c^{-4/7}$$

- Calculate intersection points
 - Divertor Plates, FW, LCMS
Benmarcking GOURDON

- Code designed for W7-X

☐ Match LCMS of VMEC?
Plate/FW Intersection

- Check Intersection with Plates/FW
- Distances easily calculated
Summary and Future

- New GOURDON is Ready
 - LCMSs agree(?), Plate/FW Inters. accurate
- Heatloads/Peaking factors from Tracing
 - Understand/implement averaging process
 - Need to use guiding centers?
- Full Test Case
 - Need LCMS, FW, Mag Field
 - Probe Island Structure, begin divertor design