Elemental Researches on Liquid Wall of KOYO-F -Aerosols, Beam port, and Cascade flow -

T. Norimatsu¹, T. Oshige¹, Y. Shimada², H. Furukawa², T. Kunugi³, H. Nakajima⁴, Y. Kajimura⁴, and K. Mima¹

1) Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
2) Institute for Laser Technology, Osaka, Japan
3) Department of Nuclear Engineering, Kyoto University
4) Department of Engineering Science, Kyushu University

Presented at US/Japan workshop on Fusion Power Reactor Design and Related Advanced Technologies

UCSD, San Diego, CA, March 5-7, 2008
Outline

• Introduction of KOYO-F

• Stability of cascade flow

• Protection of beam ports by a magnetic field

• Experimental simulation of ablation process by alpha particles using punch-out dot target
KOYO-F is a commercial or very “close to” commercial power plant.

System specification
- **Thermal output**: 3664 MW
- **Electric power**: 1280 MW
- **System efficiency**: 33%

Laser
- Cooled Yb:YAG Ceramic
- 1.2MJ/16Hz
- (1.1MJ + 100kJ)
- **Efficiency**:
 - 13.1% for Main
 - 5.4% for heating
 - 11.8% in total

Plasma
- **Gain**: 160
- **Fusion Yield**: 200MJ

Reactor
- 4 modular reactors
- **First wall**: Liquid LiPb
- **Cascade flow**
KOYO-F with 32 beams for compression and one heating beam

Parameter of KOYO-F

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of beams</td>
<td>32 (compression)</td>
</tr>
<tr>
<td></td>
<td>1 (heating)</td>
</tr>
<tr>
<td>Inner size of chamber</td>
<td>3 m in radius</td>
</tr>
<tr>
<td></td>
<td>12 m in height</td>
</tr>
<tr>
<td>Thermal load on the first wall</td>
<td>1.8 MJ/m²</td>
</tr>
</tbody>
</table>

Tilted first panels to make no stagnation point of ablated vapor
After activity of Reactor Design Committee, elemental, collaborative researches are continued to increase the reliability of KOYO-F.

- Ablation and formation of aerosols
 - Ablation process of liquid flow from first wall and RT instabilities
 - Aerosols from planar source;
 - Simulation;
- Stability of cascade flow;
- Protection of beam port;
- Injection and tracking;
- Tritium recovery;
- Chamber Activation;
- Swelling;
Outline

• Introduction of KOYO-F

• Stability of cascade flow
 – (Collaborative work with Dr Kunugi of Kyoto University)

• Protection of beam ports by a magnetic field

• Experimental simulation of ablation process by alpha particles using punch-out dot target
Cascade flow of KOYO-F

1) The height of cascade is 30 cm that comes from free fall distance in 0.25 sec (4Hz).
2) There is a void at the top of each step to obtain a stable flow.
Design base of mockup

- Water was used instead of liquid LiPb for visibility.
- The mockup was designed to obtain the same Weber number.

Reynolds number: \(\text{Re} = \frac{u\delta}{v} \)

Weber number: \(\text{We} = \frac{\rho u^2 \delta}{\sigma} \)

\[
\frac{\text{We}_{\text{water}}}{\text{We}_{\text{LiPb}}} = \frac{\sigma_{\text{LiPb}}}{\sigma_{\text{water}}} \frac{\rho_{\text{water}}}{\rho_{\text{LiPb}}} \left(\frac{u_{\text{water}}}{u_{\text{LiPb}}} \right)^2 = 1
\]

\[
\therefore \frac{u_{\text{water}}}{u_{\text{LiPb}}} = 1.21
\]
The height of the front panel is the same as actual reactor but the width is $\frac{1}{4}$ of KOYO-F 15cm
Flow loop of mockup

Test Section

Flow Meter

Valve

Flow Meter

Valve

Valve

Valve

Tank

Pump

Pump

Tank

Drain

Drain

Electric Balance

8 l/min
A continuous flow was obtained if the thickness is > 3mm.

The flow rate was 1.5 times larger than KOYO-F.
Summary of this section

• A continuous stable flow was formed if the thickness of flow was > 3mm.

• Remaining issue: demonstration of free edge
• A slit would be the solution (Proposed by Kozaki)

No support on this edge
Outline

• Introduction of KOYO-F

• Stability of cascade flow

• Protection of beam ports by a magnetic field
 – (Collaborative work with Dr. Nakashima and Kajimura of Kyushu University)

• Experimental simulation of ablation process by alpha particles using punch-out dot target
After laser shot, the tip of beam port would be coated with a membrane of liquid LiPb due to condensation of evaporated LiPb but some protection scheme is necessary for long term operation.

Our primary goal is to reduce the load to 1/10 of original design.
Protection scenario

Magnetic field

First flow

Coil
Three dimensional hybrid code was used. Ions were treated as particles and electrons were treated as a fluid.

Equation of motion of ions

\[m_i \frac{d\mathbf{v}_i}{dt} = Ze(\mathbf{E} + \mathbf{v}_i \times \mathbf{B}), \quad \frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i \]

Hydrodynamic equation of electrons

\[n_e m_e \frac{d\mathbf{v}_e}{dt} = -en_e(\mathbf{E} + \mathbf{v}_e \times \mathbf{B}) - \nabla P_e \]

Faraday’s law

\[\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \]

Ampere’s law

\[\nabla \times \mathbf{B}_p = \mu_0 (\mathbf{J}_e + \mathbf{J}_i) \]

\[\mathbf{J}_e = -en_e \mathbf{v}_e, \mathbf{J}_i = en_i \mathbf{v}_i \]

• The electric field in plasma was calculated from motion of electrons and that in neutral region was calculated from Laplace equation.
Calculation model

Initial alpha particles

Beam port

Coil

$N_\alpha = 2.5 \times 10^{18} / \text{m}^3$

$V = 1.4 \times 10^6 \text{ m/s}$
Magnetic field is effective to reduce the alpha load on the tip of beam port.

- No influence on side wall of beam port
- Thermal load around the beam port was increased to 150% but this is acceptable.

Thermal load by alpha (%)

- 100% = 0.35 MJ/m²

Coil radius r = 13 cm
B = 0.9 T
Optimization of the coil radius

A magnetic field of >0.9 T is necessary to reduce the thermal load below 0.1 I_0.

![Graph showing thermal load versus magnetic field at the center](image)
Thermal load around the beam port was increased to 150% but this is acceptable.

Thermal load on the inner wall of the beam port was increased to 0.15 I_0.

コイル半径 $r = 13$ cm
コイル中心磁場強度 $B = 0.9$ T

Thermal load by alpha (%)

100% = 0.35 MJ/m²
To reduce the load on corner

Original design

With corner cut L = 6 cm

\[r = 13 \text{ cm}, \quad B = 0.7 \text{ T} \]
Corner cut reduced the necessary magnetic field to 0.7 T.

The dependence of corner cut on the thermal load at $B=0.7$ T.

The magnetic field at the center was reduced to 0.7T with corner cut.
Summary of this section

• We successfully reduced the thermal load on the beam port to acceptable level using a 0.7 T magnetic field.

• Remaining issue;
 – Thermal load of 0.04 MJ/m²
 • SiC would be the solution
 – How to make the 0.7 T field
 • Pulse operation, 50kA, 100 μs, 4Hz
 • Cooling of coil, the conductor would be liquid LiPb
Outline

- Introduce Design of KOYO-F
- Stability of cascade flow
- Protection of beam ports by a magnetic field
- Experimental simulation of ablation process by alpha particles using punch-out dot target
Ablation depth and profiles of ablated plume obtained by simulation

Temporal profile:
- Intensity (W/cm²)
- Ablation Depth
- Time (ns)
- R = 3 m

Spatial profile:
- Number Density (cm⁻³)
- Velocity (m/s)
- Pressure: few kbars at Bragg peak

Bragg peak

Alpha

Liquid → Vacuum

Number Density

Velocity

Time = 1677 ns

Liquid

Vacuum
Laser irradiation simulates for α-particles heating from backside of metal layer.

- Laser
- Glass plate: 7 ~ 10 μm
- Coated lead or tin: (Lithium was ignored because of light weight)

- Energy density:
 - This experiment: 5 MJ/m²
 - KOYO-F: 0.35 MJ/m²
- Pulse width:
 - This experiment: 15 ns
 - KOYO-F: 50 ns
Experimental setup. Laser-scattering measurement was used to observe flying situation of metal.
Dot target propelled toward without large divergence angle

Dot tin 9μm

Time resolution: 7.5 ns

Targets were propelled forward without large divergence angle

This result indicates the tilted-front-panel concept works well.
Velocities of mass center of tin particles were 1.0 ~ 1.5 km/s

\[\frac{dP}{dt} = m \frac{dv}{dt} \]

\(p \sim 0.8 \text{ kbar} \)

@ 1km/s

(Similar to simulation)

1.0 ~ 1.5 km/s @ 10 \(\mu \) m thickness

250 ~400 m/s @ KOYO-F

5MJ/m²

0.35 MJ/m²
Spouted gas and small particles, and large particles were detected at 10-mm away from glass plate.

- Averaged density: 2×10^{18} (cm$^{-3}$)
- Diameter: ~10 μm
Laser irradiation induces RT instability and break up solid thin surface, generates gas clusters and large particles.
Summary of this section

• When we discuss chamber clearance, we must consider hydrodynamic process of ablation.

• Large diameter (10 μm) particles would be formed.

• Remaining issue
• Discussion on the secondary particles are necessary.
Summary

• **Stability of cascade flow**
 • When the thickness of the flow is > 3 mm, a continuous stable flow was obtained on a hydrophobic panel.

• **Protection of beam port**
 • Thermal load of alpha particles was reduced to 1/10 of the original design. No ablation takes place.
 - Remaining issue: protection of inner wall
 - SiC would be the solution.

• **Aerosols (100 nm diameter) and particles (10 μm)**
 • Hydrodynamic process must be considered to discuss formation of aerosols and particles.
 - Remaining issue: Secondary particles