Introduction condition of a tokamak fusion power plant as an advanced technology in world energy scenario

US-Japan Workshop on Fusion Power Plant and Related Advanced Technology with participation of EU

Center for Promotion of Computational Science and Engineering, JAERI
Jan. 11, 2005, Tokyo, Japan

°R. Hiwatari, K. Tokimatsu, Y. Asaoka, K. Okano, S. Konishi and Y. Ogawa

Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
Research Institute for Innovative Technology for the Earth (RITE), Tokyo, Japan
Institute of Advanced Energy, Kyoto Univ., Kyoto, Japan
High Temperature Plasma Center, the Univ. of Tokyo, Tokyo, Japan
1. Introduction and objectives
 electric and economic break-even conditions in the fusion energy development
2. World energy scenario and break-even price of fusion energy
3. Analysis method of electric and economic break-even condition
4. Electric break-even condition
 Completion of this condition leads to recognize fusion energy as a suitable candidate of an alternative energy source in world energy scenario.
5. Economic break-even condition
 Completion of this condition leads for fusion energy to be selected as an alternative energy source
6. Summary
Introduction

Three Milestone of Fusion Energy Development

Electric breakeven condition
- Gross electric power is larger than circulating power

Breakeven condition
- Discussed as an important issue

Commercial Reactor
- CREST, A-SSTR2, ARIES-AT etc
- Introduction into market

Economic breakeven condition
- Cost Competition with other energy sources

Experimental Reactor
- JT-60U, JET, TFTR
- Prospect for burning plasma

3 major tokamak
- JT-60U, JET, TFTR
- Prospect for burning plasma

Development Path
- Selected as an alternative energy in a long term energy scenario

Demo. Reactor
- Demo Reactor

Proto. Reactor
- Proto Reactor

Demonstration Reactor
- ITER
- Prospect for net electric power generation

Recognized as a suitable candidate of an alternative energy in a long term energy scenario
Objectives

The present study reveals the following two introduction conditions of a tokamak fusion power plant in a long term energy scenario.

(1) **Electric breakeven condition**, which is required for the fusion energy to be recognized as a suitable candidate of an alternative energy.

(2) **Economic breakeven condition**, which is required to be selected as an alternative energy source.
World Energy Scenario

Long term world energy and model (Linearized DNE21) is applied to the fusion energy. (This model is used for IPCC post SRES activity.)

Under the condition of 550 ppm CO₂ concentration in atmosphere, breakeven price and introduction year are analyzed.

If the COE for the fusion energy can achieve the 65mill/kWh, 20% share of the fusion energy in all produced electricity in 2100 is expected.

Break-even Price (BP) in 2050 is estimated at 65mill/kWh ~ 135mill/kWh

Economic Breakeven condition in this study.
Analysis Method

FUSAC (FUsion power plant System Analysis Code)
- 0D plasma model of ITER Physics Guidelines
- simple engineering model based on TRESCODE(JAERI)
- Generomak Model for economic analysis

Database of 10,000 operation points for a tokamak
Plasma size (major radius, aspect ratio), major physical parameters, shape and location of reactor component (TF, CS coil, radial build), weight of each component, construction cost, cost of electricity (COE)

Electric and economic break-even condition
β_N, f, n_{GW}, HH required to achieve electric and economic break-even condition
Parameter Region

<table>
<thead>
<tr>
<th>Parameter</th>
<th>R (m)</th>
<th>A</th>
<th>κ</th>
<th>δ</th>
<th>Te(=Ti) (keV)</th>
<th>qψ</th>
<th>Btmax (T)</th>
<th>ηe (%)</th>
<th>ηNBI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma size</td>
<td>5.5 ~ 8.5</td>
<td>2.6 ~ 4.0</td>
<td>1.8, 1.9, 2.0</td>
<td>0.35, 0.45</td>
<td>12 ~ 20</td>
<td>3.0 ~ 6.0</td>
<td>13, 16, 19</td>
<td>30, 40</td>
<td>30, 50, 70</td>
</tr>
<tr>
<td>Max. Magnetic field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The outlook of R&D for Ni₃Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⇒ 16T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The coolant conditions of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITER test blanket module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⇒ 30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBI system efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The outlook of NBI system in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITER (~ 40%) ⇒ 50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• NBI power for current drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>restricted to 200MW.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1.4m for blanket and shield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>region was kept.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Current ramp-up is induced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>by CS coils.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plasma Performance Required to Generate Net Electric Power \(\beta_N \)

\(\beta_N \) required for net electric power

- \(P_{e\text{net}} = 0 \text{ MW} \)

 \(1.2 \leq \beta_N \leq 2.7 \)

- \(P_{e\text{net}} = 1000 \text{ MW} \)

 \(3.0 \leq \beta_N \leq 5.8 \)

ITER inductive operation mode (\(\beta_N = 1.8 \)) corresponds to \(P_{e\text{net}} = 0 \text{MW} \) region

Effect of restriction \(P_{\text{NBI}} \)

The operational region is enlarged with the increasing the restriction PNBI

\(P_{e\text{net}} = 1000 \text{ MW} \) case

\(P_{\text{NBI}} \leq 100 \text{ MW} \) and \(3.5 \leq \beta_N \) \(\Rightarrow \) \(P_{\text{NBI}} \leq 300 \text{ MW} \) and \(2.7 \leq \beta_N \)
Plasma Performance Required to Generate Net Electric Power ---HH---

HH required for net electric power

- $P_{e_{\text{net}}} = 0 \text{ MW}$
 - $0.8 \leq HH \leq 2.2$

- $P_{e_{\text{net}}} = 1000 \text{ MW}$
 - $0.9 \leq HH \leq 1.6$

ITER inductive operation mode (HH=1.0) is included in $P_{e_{\text{net}}} = 0 \text{ MW}$ region

Effect of restriction P_{NBI}

The operational region is enlarged with the increasing the restriction P_{NBI}

- $P_{e_{\text{net}}} = 1000 \text{ MW}$ case
 - $P_{\text{NBI}} \leq 100 \text{ MW}$ and $1.1 \leq HH \Rightarrow P_{\text{NBI}} \leq 300 \text{ MW}$ and $0.8 \leq HH$
Plasma Performance Required to Generate Net Electric Power ---fn_{GW}---

\[fn_{GW} \text{ required for net electric power} \]

- \(P_{e}^{\text{net}} = 0 \text{ MW} \)
 \[0.4 \leq f_{n_{GW}} \leq 1.1 \]

- \(P_{e}^{\text{net}} = 1000 \text{ MW} \)
 \[0.9 \leq f_{n_{GW}} \leq 2.0 \]

ITER inductive operation mode (\(fn_{GW} = 0.85 \)) corresponds to \(P_{e}^{\text{net}} = 0 \text{ MW} \) region.

Effect of restriction \(P_{\text{NBI}} \)

The effect of restriction \(P_{\text{NBI}} \) is not described in case of the required \(fn_{GW} \).
Correlation between Plasma Performances

Both $f_{n_{GW}}$ and β_N have to be increased together so as to increase the net electric power.

No clear relationship between $f_{n_{GW}}$ and H_H.

No clear relationship between β_N and H_H.

There is no operational point under $H_H \leq 0.8$, of course, which is depending on the restriction P_{NBI}.

Existence of inevitable HH value.
Plasma Performance Diagram for the Net Electric Power Generation ---R=8.5m---

\[P_{\text{net}} = 0 \text{ MW and } P_f = 1000 \text{ MW} \]
\[\beta_N = 1.5, \text{ HH} = 1.0 \]

\[P_{\text{net}} = 600 \text{ MW and } P_f = 3000 \text{ MW} \]
\[\beta_N = 3.0, \text{ HH} = 1.15 \]

Requirement to increase \(P_{\text{net}} \)

\[\beta_N \text{ and } f_{\text{GW}} \]
- Increase together

\[\text{HH} \]
- Not necessary to increase
- Depending on the restriction \(P_{\text{NBI}} \)

In comparison with the present ITER experimental plan

The outlook of both \(P_{\text{net}} = 0 \text{MW} \) and \(P_{\text{net}} = 600 \text{ MW} \) will be obtained.
In comparison with the present ITER experimental plan

The outlook of both Penet =0MW and Penet=600 MW will be obtained.
In comparison with the present ITER experimental plan

The outlook of Penet =0MW will be obtained, but it is difficult to achieve Penet=600MW.
Typical electric break-even condition

Typical operation point for each major radius and each net electric power in the previous figures.

- HH \sim 1.0 \text{ for } P_{e}^{\text{net}}=0\text{MW operation points}
- HH \sim 1.2 \text{ for } P_{e}^{\text{net}}=600\text{MW operation points}

ITER experimental region covers wide range of operation point from $\beta_N=1.8$ to $\beta_N=3.6$.

How small device is feasible for Demo depends on how high plasma performance is achieved in ITER.

\[\kappa = 1.9, \quad B_{t_{\text{max}}} = 16\text{ T}, \quad \eta_e = 30\%, \quad \eta_{\text{NBI}} = 50\% \]
Advancement of engineering condition

Engineering Conditions for economic break-even condition

- $B_{\text{tmax}} = 16T$, $\eta_e = 40\%$, $P_e^{\text{net}} = 1000$MWe, other condition are the same as the previous electric breakeven analysis.
- Plant availability 60%, an unexpected outage is considered
- Including **without CS coil case (CS-less case)**, Note that full non-inductive current ramp-up is required
Economic break-even condition β_N

β_N required for breakeven price

Higher limit of breakeven price (135mil/kWh) $\beta_N \geq 2.5$ is required

Lower limit of breakeven price (60mil/kWh) $\beta_N \geq 5.0$ and $R_p < 5.5$ m is required.

◆ In the lower limit of $5.5m < R_p < 6.5m$, simplified radial build without CS coil is required.
◆ Upper limit of breakeven price is possible to be attained by $\beta_N \geq 2.5$, which is examined in the ITER advanced operation model.

$k = 1.9, B_{\text{tmax}} = 16$ T, $\eta_e = 40\%$, $\eta_{\text{NBI}} = 50\%$
HH required for breakeven price

- The higher HH is the lower COE is, because of reduction of the cost for the current drive system.
- In contrast with β_N, the required HH region is almost the same through the range of $5.5m < R_p < 8.5m$.
- The important suggestion is that there is no path with $HH < 0.9$ to introduction of the tokamak fusion reactor into the long term world energy scenario.
Dependence of COE on B_{tmax}

- The increase of B_{tmax} is very effective for the mitigation of the required β_N under the condition of including the simplified radial build without a CS coil.
- The increase of B_{tmax} increases the lowest limit of COE under the condition of the same critical current density of TF coils, because the increase of the coil volume or the device size, and the lower limit of COE range of 19T increases up to 90mill/kWh.
- CREST ($R_p=5.4$, $\eta_e41\%$, $B_{tmax}=13T$) is near the breakeven price of 65mill/kWh.

To get the merit of high magnetic field, the current density of super conductor also has to be improved. When current density about 20MW/m2 of TF coils is feasible with the same cost as a 10MA/m2 coil, the merit of high field is clearly seen.
Electric Breakeven condition

$\beta_N \geq 2.0$, $HH \geq 1.0$, steady state operation technique, max. magnetic field $16T$, thermal efficiency $\eta_e = 30\%$ lead to achieve the electric breakeven condition.

The electric breakeven condition requires the simultaneous achievement of $1.2 < \beta_N < 2.7$, $0.8 < HH$, and $0.3 < fn_{GW} < 1.1$ under the condition of $B_{tmax} = 16T$, $\eta_e = 30\%$, and $P_{NBI} < 200MW$. It should be noted that the relatively moderate conditionns of $\beta_N \sim 1.8$, $HH = 1.0$, and $fn_{GW} \sim 0.9$, which correspond to the ITER reference operation parameters, have a strong potential to achieve the electric breakeven condition.

Economic Breakeven condition

$\beta_N \geq 3.0$, $HH \geq 1.0$, $\eta_e > 40\%$ leads to the upper limit of breakeven price and to the possibility for fusion energy to be introduced into the world energy scenario. To prepare for a severe breakeven price (65mill/kWh), $\beta_N > 5.0$ with $R_p < 5.5m$ should be aimed at.

The economic breakeven condition requires $\beta_N \sim 2.5$ for 135mill/kWh of higher breakeven price case and $\beta_N \sim 5.0$ for 65 mill/kWh of lower breakeven price case under the conditions of $B_{tmax} = 16T$, $\eta_e = 40\%$, plant availability 60%, and feasibleness of a simplified radial build without CS coils. The demonstration of steady state operation with $\beta_N \sim 3.0$ in the ITER project leads to the prospect to achieve the upper region of breakeven price in the world energy scenario. This β_N requirement will be somewhat mitigated with higher B_{tmax}.
System Analysis Code (FUSAC)

Calculation Flow

Input and initial calculation
- q_v, β_N, T_{ave}, R_p, a_p, B_{max}, B_i

- plasma current I_p
- beta value β_{th}, β_{th}
- plasma density n_e, n_i

- total fusion power P_f

- driving and bootstrap current I_{CD}, I_{BS}

- confinement property W_{th}, τ_E, HH, $f_{n_{GW}}$

- current driving power P_{NBI}

- total thermal output P_{th}
- neutron wall load P_{nw}

- circulating electric power P_{circ}

- gross electric power P_{gross}

- net electric power P_{net}

Output of Result

- elevation view
- plane view
- radial build
\(f_{GW} \) and Operation Temperature

- The required \(f_{GW} \) decreased with increasing operation temperature.
- \(\beta_N \) is almost constant.

The operation temperature will be optimized.
The effect of thermal efficiency

R=7.5 m and $\eta_e=40\%$ case

$P_{e\text{net}}=0$ MW and $P_f=1000$ MW
$\beta N=1.5$, HH=0.9

$P_{e\text{net}}=900$ MW and $P_f=3000$ MW
$\beta N=3.4$, HH=1.15

The η_e progress will decrease the required plasma performances with the same $P_{e\text{net}}$, or increase the net electric power with the same plasma performance.

To get the economical outlook, the η_e progress is inevitable.
The effect of NBI system efficiency

R=7.5 m and $\eta_{\text{NBI}}=30\%$ case

$P_{\text{e, net}}=0$ MW and $P_f=1000$ MW

$\beta_N=1.8$, HH=1.4

$P_{\text{e, net}}=450$ MW and $P_f=3000$ MW

$\beta_N=3.4$, HH=1.15

The η_{NBI} is critical to the required HH, especially, in the low Penet region.

The η_e progress should be almost completed by the demo reactor stage.
Increase of B_{tmax} from 13T to 19T

- The required βN decrease
- The operational region is shrank

In case of $B_{\text{tmax}}=19T$, the current ramp-up is not possible by CS coil, or 1.4m space for blanket and shield cannot be accommodated ($R<7.5$).