He-Cooled Divertor Concepts

L.V. Boccaccini
Task co-ordinator of TRP-001 in the EU PPCS

Principal Investigators:
P. Norajitra (FZK), C. Nardi (ENEA), P. Karditsas (UKAEA)

US-Japan Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU
January 11-13, 2005 at Tokyo, JAPAN
Contributions

<table>
<thead>
<tr>
<th>FZK -</th>
<th>EFREMOV (RF)</th>
<th>ENEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Norajitra,</td>
<td>I. Mazul,</td>
<td>C. Nardi</td>
</tr>
<tr>
<td>T. Ihli,</td>
<td>R. Giniyatulin</td>
<td>S. Papastergiou,</td>
</tr>
<tr>
<td>R. Kruessmann,</td>
<td>V. Kuznetsov,</td>
<td>A. Pizzuto</td>
</tr>
<tr>
<td>W. Krauss,</td>
<td>A. Makhankov,</td>
<td>G. Brolatti,</td>
</tr>
<tr>
<td>S. Gordeev,</td>
<td>I. Ovchinnikov</td>
<td>G. Mazzone,</td>
</tr>
<tr>
<td>N. Holstein,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. Chehtov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Sunyk,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Weggen,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Zeep</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

		UKAEA
		P. Karditsas
Outline

1. Introduction
2. Rationale of the He-cooled divertor concepts
3. Design of the proposed concepts of He-divertors
4. Related R&D
5. Conclusion and future work
Introduction: Fusion Power Plant (model C)

- 16 TF coils
- 8 upper ports (f) (modules & coolant)
- 176 blanket modules (a) (5-6 yrs. lifetime)
- 8 central ports (g) (modules)
- Vacuum vessel 70 cm (e) (permanent)
- Lower divertor ports (h) (8 remote handling, 16 coolant)
- Divertor plates (b) (1-2 yrs. lifetime)
- Coolant manifolds (d) (permanent)
- Cold shield 30 cm (c) (permanent)
- 8 lower divertor ports (h) (8 remote handling, 16 coolant)
Fusion Power Plant Models investigated in the EU PPCS

<table>
<thead>
<tr>
<th>Development rating</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
<th>Model AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>near term</td>
<td>near term</td>
<td>advanced</td>
<td>very advanced</td>
<td>near term</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blanket type</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
<th>Model AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCLL</td>
<td>HCPB</td>
<td>Dual Coolant</td>
<td>Self Cooled</td>
<td>HCLL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divertor type</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
<th>Model AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>water cooled</td>
<td>He cooled</td>
<td>He cooled</td>
<td>Liq. metal cool.</td>
<td>He Cooled</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breeder / Multiplier</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
<th>Model AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-17Li / none</td>
<td>Li-ceramic / Be</td>
<td>Pb-17Li / none</td>
<td>Pb-17Li / none</td>
<td>Pb-17Li / none</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coolant</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
<th>Model AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>Helium</td>
<td>Helium and Pb-17Li</td>
<td>Pb-17Li</td>
<td>Helium</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T-extraction</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
<th>Model AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-17Li circulation</td>
<td>He purging flow (1 bar)</td>
<td>Pb-17Li circulation</td>
<td>Pb-17Li circulation</td>
<td>Pb-17Li circulation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structural Material</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
<th>Model AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAFM</td>
<td>RAFM</td>
<td>RAFM (FW ODS plated)</td>
<td>SiC/ SiC</td>
<td>RAFM</td>
<td></td>
</tr>
</tbody>
</table>
Boundary conditions for the in-vessel components

<table>
<thead>
<tr>
<th></th>
<th>In Blanket</th>
<th>Model A</th>
<th>Model B (AB)</th>
<th>Model C</th>
<th>Model D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface heating</td>
<td>0.6</td>
<td>0.5 MW/m²</td>
<td>0.6 MW/m²</td>
<td>0.5 MW/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 / 3.0 MW/m²</td>
<td>2.0 / 2.4 MW/m²</td>
<td>2.23 / 3.1 MW/m²</td>
<td>2.6 / 3.4 MW/m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>In Divertor</th>
<th>Model A</th>
<th>Model B (AB)</th>
<th>Model C</th>
<th>Model D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface heating</td>
<td>5 / 15 MW/m²</td>
<td>5 / 10 MW/m²</td>
<td>5 / 10 MW/m²</td>
<td>/ 5 MW/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 MW/m²</td>
<td>1.6 MW/m²</td>
<td>1.7 MW/m²</td>
<td>1.8 MW/m²</td>
<td></td>
</tr>
</tbody>
</table>
He cooled divertors have being proposed ...

- To use the same coolant flowing in the blanket systems: at the present three reactor concepts (HCPB [model B], Dual Coolant [C], HCLL[AB]) that are under investigation the EU Programme envisage He cooled divertors.
- To integrate the divertor loop in the power generation system increasing the overall efficiency of the reactor (He allows a design with temperatures comparable or higher than in the blanket system)
- To avoid safety concerns for incompatibility of water with breeding/multiplier materials (especially in the case of Be based concepts, Model B, to avoid the Be-steam exothermal reaction with H production)
Integration in the power generation system

HX1 1432 MW 300-480°C FW
HX2 335 MW 480-615°C Divertor
HX3 1976 MW 480-700°C PbLi
HX4 248 MW 700-800°C Divertor
Divertor cassette for Model C and Target Plate Requirements

Target Plate (outboard):

- length 1m
- heat peak: 10 MW/m²
- average heat: 5 MW/m²
- moving strike point: 40 cm
- protection layer: 5mm (W)
- allowable temperatures and stresses in the materials
- Pumping power / Thermal power < 0.1
Design loading conditions
The critical part of the design is the OB target plate in which incident heat fluxes not lower than 10 MW/m2 are expected. These very demanding requirements can be fulfilled if these two issues can be successfully addressed:

1. The identification of a heat transfer mechanism between Helium and plasma side structure able to reach heat transfer coefficient greater than 30 kW/m2 K.

2. The selection/development of materials with very good thermal properties and a large operational temperature window that can be used as structural material (high pressure helium containment) for the high flux region at the plasma side.
Materials and anticipated operational temperature windows required for a high temperature divertor

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>Min Temp.</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiles</td>
<td>W</td>
<td>tbd (600°C) DBTT</td>
<td>2500°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Melting temperature 3410°C</td>
</tr>
<tr>
<td>High heat flux structure (high pressure He containment)</td>
<td>W-alloy</td>
<td>600°C DBTT</td>
<td>1300°C re-crystallisation</td>
</tr>
<tr>
<td>Structure and manifolds</td>
<td>W-alloy</td>
<td>600°C DBTT</td>
<td>1300°C re-crystallisation</td>
</tr>
<tr>
<td></td>
<td>ODS</td>
<td>400°C DBTT</td>
<td>700-750°C strength limits</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
High flux He-cooled divertor concept development

A) Plate design (enhancement of the heat transfer coefficient -> radial cooling):

- PPA-99: Unconventional design (FZK), qmax ~ 5 MW/m²
- PPCS/II (2000-2001): Simple slot (FZK), qmax ~ 6 MW/m²
- PPCS/III (2001): Modified slot (FZK), qmax ~ 10 MW/m² *(in Model B)*

B) Modular design (thermal stress reduction):

- PPCS/III (2002): Modified **HETS** (ENEA), qmax ~ 10 MW/m²
- PPCS/III (2002) - **Model C**: Pin-array **HEMP** (FZK), qmax ~ 10 MW/m²
- TRP-001 (2003-2004) – Investigation on design concepts based on **HETS**, **HEMP**, **HEMS** and **HEMJ**
Principle of the modular design and the radial cooling

- Finger
- Tile
- Cup
- Heat transfer promoter
- inlet/outlet separation cartridge
- Strip structure / manifolds
Cooling Technology: Heat transfer promoters

\[\dot{q} = htc \cdot \frac{A_c}{A_{Armor}} \cdot (T_w - T_c) \]

- HETS single-jet
- HEMP pin array
- HEMS slot array
- HEMJ multi-jet
Cooling Technology: pin and slot array

Pin array

Slot array

HEMP

HEMS
Cooling Technology: Jet Impingement

Cooling technology applied in the fields of:

- Aircraft Engines
- Gas Turbines
- Burners

‡ DEMO Divertor

Jet Impingement

HOT

wall jet flow
free jet flow

impingement region
COOLING TECHNOLOGY: Jet Impingement in HEMJ

Single-jet

- Heat transfer coefficient
- (Low Re Number)
- \(D_{jet} = 0.6 \text{ mm} \)

Multi-jet

- Contours of Surface Heat Transfer Coeff. (W/m²K)
- Example
Comparison of Cooling Systems (1/2)

Velocity and temperature field in HETS (UKAEA)

Stress analysis for the HEMJ concept (EFREMOV)

Tokyo, January 12, 2005
• **Cooling performances** (according to the requirements on heat flux density, allowable temperatures and stresses, pumping power limitation, etc.)

• **Fabrication** (available technique, mass production, cost-efficiency, etc.)

• **Reliability** (sensibility to blockage and tolerances, mass balancing, etc.)

At present the design groups of ENEA and FZK have selected as reference option (for the starting of the mock-up tests) jet cooling concepts, namely the HETS and the HEMJ, respectively.
HETS Design
HETS: Detail of the flow mechanism

Calculated heat transfer coefficient in HETS (θ is the angle from the dome top)
HETS: Hydraulic lay-out

<table>
<thead>
<tr>
<th>Finger type and dimens.</th>
<th>He in/out</th>
<th>Coolant pressure</th>
<th>Mass flow</th>
<th>Average Heat Transfer Coeff.</th>
<th>Pressure drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEX 35 mm</td>
<td>600-669°C</td>
<td>10 MPa</td>
<td>30 g/s</td>
<td>~ 30 kW/m² K</td>
<td>0.06 MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>182</td>
<td>10</td>
<td>180</td>
<td>195</td>
<td>>0.3</td>
<td>>6.3</td>
</tr>
</tbody>
</table>

Tokyo, January 12, 2005

He-cooled Divertor Concepts

L.V. Boccaccini

23
HETS Manufacturing sequences (preliminary) 1/2

first brazing: filler based on Pd, Zr or Ni alloy to withstand 1000°C

second brazing: same filler as the first brazing
third brazing: filler based on Cu or Ni alloy to withstand ~800°C

fourth brazing: same filler as the 3th brazing
HEMJ Design

9-finger-unit

finger

FZK

strip
Layout example for Multiple-He-Jet-Cooled Divertor

Finger Unit
- a = 18 mm
- D = 15 mm
- W Alloy
- Steel
- jet-to-wall spacing H = 1.2 mm

Multiple Jet Cartridge
- center hole; D = 1 mm
- 24 holes; D = 0.6 mm
LAYOUT EXAMPLES

- rounded J1a
- sharp J1a
- sharp J1c
- rounded J1c
- sharp J1e
- rounded J1e

Limit for heat flux 10 MW/m²:

- rel. compressor power: 10%
- rel. compressor power: 7.1%
- rel. compressor power: 6.3%
Hydraulic lay-out of the target plate (schematic)

HEMP / HEMS: 3x30 fingers in parallel, in 2 sections in series

„left“ Modules

„right“ Modules
HEMJ Finger

Parts

- Armor (W)
- Cap (W Alloy)
- Transition Piece (12YWT or ODS-Eurofer)
- Pin (W Alloy)
- Cartridge

Cap/Tube with Spacers for Cartridge

Spacer
Advanced 9-Finger module (1/7)
Brazing (foil)
Brazing with cast copper

Advanced 9-Finger module
(3/7)
Welding (from below)
Insert (welding)

Advanced 9-Finger module (5/7)
Welding

Advanced 9-Finger module (6/7)
Welding

Advanced 9-Finger module (7/7)
High reliability, low waste during fabrication

Construction Kit Principle:
- Small Units advantageous for R&D progress
- Small Units can be tested before assembling

9-Finger Unit Stripe-Unit Target Plate Divertor Cassette

Test, Assembly → Test, Assembly → Test, Assembly → Test, Assembly → …
Measurement of pressure drops for HETS with air

Measurement device (left) and detail of the test section (right) for pressure drop experiments.
HEBLO (FZK) – Test facility for CFD-Validation

Temperature Cycle
- operation pressure: 8 MPa
- helium flow rate: 120 g/s
- Helium temp. (max.): 430 °C
- He-heating power: 60 kW
- Surface heating: 3 kW

Testprogram for 2004 / 2005:
- 10:1 Mock-up for HEMJ
- 10:1 Mock-up for HEMS
- 10:1 Mock-up for HEMP
Pressure drops and HTC measurements for HEMJ with Helium

EFREMOV under FZK contract

Pressure drop measurements with the Gas Puffing Facility 2
HEMJ cartridges for GPF2 experiments

HEMJ J1a
HEMJ J1-b
HEMJ J1-c
HEMJ J1-d
HEMJ J1-e
Tube for mockup
Helium facility + EB at EFREMOV (in construction)

- EB
- Heater
- Test Section
- Cooler
- Pump

inlet Temperature 600°C
mass flow ~ 100 g/s
Proposed fabrication and joint technologies

<table>
<thead>
<tr>
<th></th>
<th>HETS [ENEA]</th>
<th>HEMJ (HEMP/HEMS) [FZK]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiles</td>
<td>Plasma spray/ powder technology</td>
<td>Cutting from rods and grinding</td>
</tr>
<tr>
<td>Cup (dome)</td>
<td>Machining</td>
<td>Deep drawing from cross rolled WL10 + finishing</td>
</tr>
<tr>
<td>Promoter</td>
<td>-</td>
<td>(EDM, ECM, PIM, Laser)</td>
</tr>
<tr>
<td>Structure</td>
<td>Brazing of different parts (900)</td>
<td>Standard ODS alloy machining; tube: extrusion</td>
</tr>
<tr>
<td>Joint: Tiles – Cup</td>
<td>Plasma spray/ brazing</td>
<td>Brazing or bonding (T=1300° C) by commercial alloys, Zr, V, Stemet alloys, NiCu, NiTi</td>
</tr>
<tr>
<td>Joint: Cup – Structure</td>
<td>W-W Brazing, Cu or Ni based</td>
<td>Transition joint (Mechanical interlock + Cu sealing)</td>
</tr>
<tr>
<td>Joint: Promoter – Cup</td>
<td>-</td>
<td>(Brazing or bonding (T=1300° C) by commer. alloys, Zr, V, Stemet alloys, NiCu, NiTi)</td>
</tr>
</tbody>
</table>
Examples of W mock-up fabrication for cap and slot array

Mock-up of W-thimble with integrated slot array fabricated by EDM process.

W-slot array prepared by Laser process

EFREMOV under FZK contract
WL-10 showed satisfactory machining ability in comparison with conventional tungsten.
R&D on fabrication technologies: high temperature W-joint

Mock-up brazed with STEMET 1311 filler metal undergone successfully HHF screening tests

Screening test:

- 10 MW/m² 100 cycles OK
- 12 MW/m² 100 cycles OK
- 14 MW/m² 100 cycles OK
- 15 MW/m² 100 cycles OK
- 16 MW/m² 100 cycles OK
R&D on fabrication technologies: high temperature curved W-joint

Brazing successful
W-Cap – Steel Joint (Efremov Inst.)

W-Cap – Steel-Tube Joint MOCKUP

Cross-section of lock-area

- Cap W
- Cast copper layer
- Pins W
- Transition piece steel
R&D on fabrication technologies: W-steel joint

Finger mockup (without armour tile) after casting (left) and after post-testing examination (right).

Main elements for W-Steel joint with new (conic) lock

EFREMOV under FZK contract
HEMP Divertor: thermohydraulics design

\[\Delta p_{\text{total}} \approx 0.44 \text{ MPa} \]
\[P_{\text{pump}} \approx 8.6 \% \text{ of } Q_{\text{divertor}} \]

Zone I, 50 cm → 634 °C
Zone II, 50 cm → 701 °C
Baffle + dome → 717 °C
bulk → He 10 MPa, 540 °C, 9.6 kg/s

\(\Delta p \approx 0.17 \text{ MPa} \)
Replacement path of the divertor cassettes
Conclusions and future work

- Two divertor conceptual designs based on HETS (ENEA) and HEMJ (FZK) have been defined.
- Close link between the major fields: design, material/fabrication, performance analyses and experiments.
- Results of analyses show that 10 MW/m² could be achieved with satisfactory performances (pressure drop, Helium temperatures, efficiency of power generation systems, etc).
- Pressure loss and heat transfer coefficient have been calculated. A verification with experiments is ongoing (programme started in 2004).
- Promising fabrication methods for divertor components have been defined, further R&D works required.
- Technological experiments concerning W/W and W/steel joints successfully performed at Efremov, further R&D needed for improvement (FZK).
- Building of helium loop in EFREMOV started in 2004, first experiments can start presumably mid 2005.
Objectives: He-cooled Divertor on the way to ITER & DEMO

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Big Parts Development

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development

Reactors

DEMO

ITER 2020

Big Parts Development

Cassette, TDM

Targets

Stripe-Units

Materials, Design, Joining

Finger Units

9-Finger-Units

Small Parts Development