The PPCS In-Vessel Component Concepts
(focused on Breeding Blankets)

Presented by

L. Giancarli

Commissariat à l’Energie Atomique, CEA/Saclay, France

Acknowledgements:
The work presented in this talk has been performed by the CEA and the FZK Design Teams within the framework of the EU Power Plant Conceptual Studies and of the EU DEMO Blanket Studies. Most of the presented pictures are derived from viewgraphs made by the two Teams.
Plan of the Presentation

1. Introduction on In-Vessel Components

2. Breeding Blankets
 1. Functions and Strategy
 2. Present Choices for EU PPCS and DEMO
 3. Design & Analyses Details of the EU PPCS Blankets
 4. Blanket Systems and Integration Issues (examples)
 5. R&D Issues (medium term, long term)

3. Divertors (short overview)
 1. Functions and Strategy
 2. Choices for EU PPCS

4. Conclusions
In-Vessel Components Location & Conditions

The most severe working conditions and requirements

- High surface heat flux: 0.5 (FW) → 5 MW/m² (div.)
- High neutron wall loading (FW): ~2.5 MW/m², ~150 dpa(Fe)
- Operation under void (plasma): → low coolant leakages
- High magnetic field (~7 Tesla): (high MHD effects)

Moreover: Remote access in high radiation field (maintenance, inspection, repairs, diagnostics, …)
Three crucial functions for a Power Plant

- **Convert** the neutron energy (80% of the fusion energy) in heat and collect it by mean of an high grade coolant to reach high conversion efficiency (>30%)
 - in-pile heat exchanger

- Produce and recover all **Tritium** required as fuel for D-T reactors
 - Tritium breeding self-sufficiency

- Contribute to neutron and gamma **shield** for the superconductive coils
 - resistance to neutron damages
Tritium breeding self-sufficiency: a necessity

- Main Tritium production reaction: $^6\text{Li} + n \rightarrow T + ^4\text{He} + 4.8\text{ MeV}$
- Typical T-production rate in dedicated fission reactor: $1-2\text{ kg T / GWth / y}$
- Typical T burn rate in a fusion reactor: $\sim 50\text{ kg T / GWth / y}$ ($\sim 150\text{ gT/GWth/day}$)
- Need to produce all T and collect it on-line (because of initial inventory and safety)

 \Rightarrow Tritium Breeding Ratio, $TBR = \frac{T_{\text{prod}}}{T_{\text{burn}}} > 1$ (at least)

Tritium breeding self-sufficiency: a severe constraint

<table>
<thead>
<tr>
<th>$\text{D} + \text{T} \rightarrow ^4\text{He} + n$</th>
<th>Neutron Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\uparrow 60-80%$</td>
<td>✓ n-leakage through ports, divertor region, gaps $\Rightarrow 10-20%$</td>
</tr>
<tr>
<td>\downarrow</td>
<td>✓ n-parasitic absorptions on other materials (structures) $\Rightarrow 10-15%$</td>
</tr>
<tr>
<td>$^4\text{He} + \text{T} \leftarrow ^6\text{Li} + n$</td>
<td>✓ blanket n-leakage (<5%)</td>
</tr>
</tbody>
</table>

\Rightarrow 20 to 40 % of neutrons are not available for T-production

Neutronics requirements

- *minimize n-losses*
- \Rightarrow small gaps and openings, minimization of structures and coolant fractions

- *add a n-multiplier*
 - Pb or Be $(n,2n)$ or $\text{Li}^7 (n, n'T)$
Breeding blankets materials

Main available breeders (Li-based compounds)
- Liquid Lithium (7.5% 6Li)
- Eutectic Pb-17Li (T_m 235°C)
- Molten Salts:
 - FLiBe, FLiNaBe
- Li-Ceramics:
 - Li_4SiO_4, Li_2TiO_3, LiO_2

Main Structural Materials
- Ferritic/Martensitic Steels
- Vanadium Alloys
- Composites SiC/SiC

Neutron multipliers
- Be (n, 2n)
- Pb (n, 2n)
- 7Li (n, n'T)

Main Coolants for Nuclear (relevant T for good efficiency))
- Pressurized Water (PWR)
- Helium
- Liquid Metals: Li (Na), Pb-17Li

A breeding blanket has to be designed using a combination of these materials. Best concepts are an optimum compromise between all constraints which has to take into account:
- temperature, pressure, loads levels
- compatibility between materials under the defined working conditions
- safety
- low activation/low radwaste characteristics
- performances (e.g., TBR)
- technology availability and manufacturing processes as a function of timescale
- reliability & others.....
Breeding Blankets Development Timescale

<table>
<thead>
<tr>
<th>Reactors</th>
<th>JET, TFTR, JT60, Tore Supra Asdex, etc.</th>
<th>ITER (1) international</th>
<th>DEMO (1 or more ?)</th>
<th>1st Commercial Power Plant (1 or more ?)</th>
<th>10th of the kind ➔ PPCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Goals</td>
<td>Plasma Physics (control, stability, impurities, shutdown proc., heating, etc.)</td>
<td>Plasma Ignition Long D-T Pulses Systems Integration</td>
<td>Tritium Breeding Self-sufficiency High Safety Standards</td>
<td>Electricity Production at Competitive Cost</td>
<td>Electricity Production at Competitive Cost</td>
</tr>
<tr>
<td></td>
<td>Magnetic Field Advanced Systems (e.g., super cond. coils)</td>
<td>Test of DEMO Blanket Mock-ups (Test Module)</td>
<td>Electricity Production (high efficiency, but low reliability system)</td>
<td>High Reliability</td>
<td>Possible Advanced Reliable Technology</td>
</tr>
<tr>
<td>Operation Years</td>
<td>~1980 - 2010</td>
<td>~2014 - 2034</td>
<td>~2030 - 2050</td>
<td>From ~2050</td>
<td>> 2080</td>
</tr>
</tbody>
</table>

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Breeding Blankets Concepts

<table>
<thead>
<tr>
<th>Basic Parameters</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Radius (m)</td>
<td>9.8</td>
<td>8.7</td>
<td>9.1</td>
<td>7.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Plasma Current (MA)</td>
<td>33.5</td>
<td>28.1</td>
<td>29.2</td>
<td>20.1</td>
<td>14.1</td>
</tr>
<tr>
<td>Toroidal Field on axis (t)</td>
<td>7.3</td>
<td>6.9</td>
<td>6.8</td>
<td>6.4</td>
<td>5.6</td>
</tr>
<tr>
<td>TF on TF Coil Conductor (T)</td>
<td>12.9</td>
<td>13.1</td>
<td>13.6</td>
<td>13.6</td>
<td>13.4</td>
</tr>
<tr>
<td>Elongation (95% and separatrix)</td>
<td>1.7/1.9</td>
<td>1.7/1.9</td>
<td>1.7/1.9</td>
<td>1.9/2.1</td>
<td>1.9/2.1</td>
</tr>
<tr>
<td>Triangularity (95% and separatrix)</td>
<td>0.27/0.4</td>
<td>0.27/0.4</td>
<td>0.27/0.4</td>
<td>0.47/0.7</td>
<td>0.47/0.7</td>
</tr>
<tr>
<td>Q</td>
<td>21</td>
<td>15</td>
<td>16</td>
<td>30</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering Parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Electrical Output (GW)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Fusion Power (GW)</td>
<td>5.5</td>
<td>3.4</td>
<td>4.0</td>
<td>3.4</td>
<td>2.5</td>
</tr>
<tr>
<td>P_{add} (MW)</td>
<td>265</td>
<td>234</td>
<td>234</td>
<td>112</td>
<td>71</td>
</tr>
<tr>
<td>Avg. Neutron Wall Load FW (MW/m²)</td>
<td>2.3</td>
<td>1.8</td>
<td>1.8</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Surface Heat Flux on FW (MW/m²)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Max. Divertor Heat Load (MW/m²)</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selected Breeding Blanket Type</th>
<th>WCLL</th>
<th>HCPB</th>
<th>HCLL</th>
<th>DCLL</th>
<th>SCLL</th>
</tr>
</thead>
</table>

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
PPCS Breeding Blankets Concepts

Short Term Concepts
(for models A, B, AB)

- **A** - Water-Cooled Lithium-Lead (WCLL)
 coolant T_{in}/T_{out} 285/325°C, 15.5 MPa
- **B** - Helium-Cooled Pebble-Bed (HCPB)
 ceramic/Be blanket,
 coolant T_{in}/T_{out} 300/500°C, 8 MPa
- **AB** - Helium-Cooled Lithium-Lead (HCLL)
 coolant T_{in}/T_{out} 300/500°C, 8 MPa

- To be tested in ITER (B & AB)
- Can be used for DEMO (after selection)
- Use of martensitic/ferritic steel structures
 (low activation EUROFER)

Medium Term Concept (model C)

- **C** - Dual-Coolant Lithium-Lead (DCLL)
 & He \Rightarrow He T_{in}/T_{out} 300/480°C, 8 MPa
 LiPb T_{in}/T_{out} 480/700°C

- Need SiC/SiC insulators + high Temp. HX
- Can be used in DEMO at later stage?
- Use of martensitic/ferritic steel structures
 (low activation EUROFER)

- Significant R&D required, relatively long time is required

Long Term Concept (model D)

- **D** – Self-Cooled Lithium-Lead (SCLL)
 LiPb T_{in}/T_{out} 700/1100°C

- Use of SiC/SiC structures
- Need very large & lengthy R&D (50 y?)
- Very good efficiency & safety standard

- Attractive but high development risk

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept A: Water-Cooled LiPb

Module inlet
Module outlet

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept A: Water-Cooled LiPb

Used Calculation Models

- Double Walled Tube
- First Wall Tube
- Stiffener
- Back plate
- Lithium-lead

For 2D CASTEM Thermo-mechanical Analyses

For 3D MCNP Montecarlo Neutronics Analyses

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept A: Water-Cooled LiPb

Main Analyses Results

- **Mechanics:** the modules box resists to 15.5 MPa in accidental conditions (RCC-MR)

- **Thermo-mechanic:** acceptable T (< 550°C in FW steel, < 480°C on Pb-17Li interface), acceptable stresses and deformation (RCC-MR)

- **Neutronics:** 3-D TBR = 1.06 at 90 at% ⁶Li enrichment, 30 dpa/y in FW steel, 850 appm H/y, 300 appm He/y

- **Tritium:** maximize confinement and extraction (LiPb at ~2 mm/s to avoid MHD pressure drops)
Blanket Concept B: Helium-Cooled Ceramic/Be

Modular Concept for HCPB/HCLL blankets

- He-cooled stiffening grid
- He-collectors back-plates
- He-cooled FW & Box
- Breeder Unit

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept B: Helium-Cooled Ceramic/Be

Stiffening Grid (details)

HCPB Breeder Unit

- Ceramic container with He cooling channel system
- Central He cooling channel system
- Ceramic breeder bed
- HCPB jacket
- Top Inlet He collector
- Welding Line for evacuated HCPB jacket
- HCPB carrier backplate
- Top Outlet He collector
- Inlet/Outlet He collector
- Bottom Outlet He collector
- Bottom Inlet He collector
- Beryllium pebble bed

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept B: Helium-Cooled Ceramic/Be

Scheme of the He-flow path in each module

FW/SW (alternating flow)

- Breeder unit
- Stiff. grid
- Cap
- In-/Outlet
- Back wall manifolding

Scheme of a possible module attachment to the back shield
Blanket Concept B: Helium-Cooled Ceramic/Be

3D Monte Carlo Neutronics Analyses (MCNP)

- Breeder: $\text{Li}_4\text{SiO}_4 (^{6}\text{Li} \text{30\%})$
- Blanket thickness (inb/outb): 41/51 cm
- Tritium Breeding Ratio: 1.12
- Neutron multiplication: 1.78
- Deposited Nuclear Power
 - whole blanket: 3000 MW
 - Vacuum Vessel & Shield: 310 MW
- Energy multiplication: 1.38
Blanket Concept AB: He-Cooled Lithium-Lead

Modular Concept for HCPB/HCLL blankets: details of the HCLL Breeder Unit

He in/out unit manifolds
He unit inlet
He unit outlet
Unit backplate
Cooling Plates (CPs)
Front
Blanket Concept AB: He-Cooled Lithium-Lead

HCLL Breeder Unit & Module: LiPb flow path

Stiffening plates (SPs) frontier

FW frontier (FW not shown here)

PbLi inlet

PbLi outlet

pol

rad

tor
Blanket Concept AB: He-Cooled Lithium-Lead

HCLL Module: Helium flow path

Module top view

80% He in FW

100% He in BUs

20% He in SPs

Stage #3:
- Breeder unit return
- Main He outlet

Main He outlet

Main He inlet
Scheme for Tritium control in blanket modules and associated circuits: List of T-sources, possible T-permeation flux and leakages

Some Questions
- Need of T-permeation barriers?
- Extraction & purification efficiency?
- He-chemistry?

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept AB: He-Cooled Lithium-Lead

Computation procedure to be used for the estimation of T-permeation in a blanket module

- **LiPb flow and T convection via cast3m_fluid**
- **T diffusion and permeation via cast3m_fluid (heat-like)**

Neutron code (Tripoli)

- **Tritium production rate (at/cm³ neutron)**

Thermal-mechanical code (cast3m)

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
<table>
<thead>
<tr>
<th></th>
<th>HCLL</th>
<th>HCPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBR [breeder zone thickness]</td>
<td>1.15 [55 cm]</td>
<td>1.14 [46 cm]</td>
</tr>
<tr>
<td>Coolant (He): T_{min} - T_{max} °C</td>
<td>300-500</td>
<td>300-500</td>
</tr>
<tr>
<td>Coolant passes Temperature:</td>
<td>- FW: 300– 410</td>
<td>- FW: 300 – 363</td>
</tr>
<tr>
<td></td>
<td>- BU: 410 – 500</td>
<td>- Grid: 363 – 400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- BU: 400 – 500</td>
</tr>
<tr>
<td>Coolant (He): pressure MPa</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Breeder [6Li enrichment]</td>
<td>PbLi$_{\text{eu}}$ [90%]</td>
<td>Li$_4$SiO$_4$ [40%] or Li$_2$TiO$_3$ [~70%]</td>
</tr>
<tr>
<td>Multiplier</td>
<td>-</td>
<td>Be</td>
</tr>
<tr>
<td>EUROFER: T_{min} - T_{max} °C</td>
<td>300-550</td>
<td>300-550</td>
</tr>
<tr>
<td>Breeder: T_{min} - T_{max} °C</td>
<td>400-660</td>
<td>400-920</td>
</tr>
<tr>
<td>Multiplier: T_{min} - T_{max} °C</td>
<td>-</td>
<td>400-650</td>
</tr>
</tbody>
</table>
Blanket Concept C: Dual-Coolant (He & LiPb)

Blanket Design Scheme and Main Features

Main features:
- Helium-cooled RAFM steel structures (EUROFER)
- ODS plated FW to use the high-temperature strength of ODS
- Self-cooled breeding zone with Pb17Li as breeder and coolant
- SiCf/SiC flow channel inserts as electrical (MHD) and thermal insulators leading to high exit temperature and high thermal efficiency

<table>
<thead>
<tr>
<th>Dual Coolants</th>
<th>T_{inlet} (°C)</th>
<th>T_{outlet} (°C)</th>
<th>ΔT (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium (8 MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall blanket</td>
<td>300</td>
<td>480</td>
<td>180</td>
</tr>
<tr>
<td>FW</td>
<td>300</td>
<td>450</td>
<td>150</td>
</tr>
<tr>
<td>Grids</td>
<td>450</td>
<td>480</td>
<td>30</td>
</tr>
<tr>
<td>Pb-17Li</td>
<td>480</td>
<td>700</td>
<td>220</td>
</tr>
</tbody>
</table>

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept C: Dual-Coolant (He & LiPb)

Outboard Module Horizontal Cross-section

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Used Neutronic 3D Model and Main Results

TBR = 1.15

(90% 6Li, inb/outb breeder zone thk: 50.5/85.5 cm)

- **Blanket Concept C: Dual-Coolant (He & LiPb)**
- Neutron Flux Profile in Inboard mid-plane

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept D : SiC/SiC - LiPb Self-Cooled

Design Rational (maximization of efficiency & safety)

- **Structural Material**: SiC/SiC (low afterheat, high temperature)
- **Blanket working principle**: co-axial Pb-17Li flow to maximize outlet temperature
- **Pb-17Li external circuits location**: horizontal deployment, to minimize pressure
- **Blanket remote maintenance procedure**: segment geometry, maintained through vertical ports after Pb-17Li draining
- **Potential reduction of waste quantities**: separation of outboard blanket in two zones in order to minimize radioactive waste (depending on lifetime evaluations)
- **Magnet system**: possibility of high T superconductors (77 K)
- **Plasma heating system**: acknowledge of need but not evaluated
- **Advanced conversion systems**: potential for H-production
Blanket Concept D: SiC/SiC - LiPb Self-Cooled

<table>
<thead>
<tr>
<th>Key SiC/SiC Properties and Parameters *</th>
<th>Assumed values [1] in the design analyses</th>
<th>Typical measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>~ 3000 kg/m³</td>
<td>~ 2500 kg/m³</td>
</tr>
<tr>
<td>Porosity</td>
<td>~ 5%</td>
<td>~ 10%</td>
</tr>
<tr>
<td>Young's Modulus</td>
<td>200-300 GPa</td>
<td>~ 200 GPa</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.16-0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Thermal Expansion Coefficient</td>
<td>~ 4 x 10⁻⁶/°C</td>
<td>4 x 10⁻⁶/°C</td>
</tr>
<tr>
<td>Specific heat</td>
<td>190 J/kg·K</td>
<td>190 J/kg·K</td>
</tr>
<tr>
<td>Thermal Conductivity in Plane (1000°C)</td>
<td>~ 20 W/m·K (EOL)</td>
<td>~ 15 W/m·K (BOL)</td>
</tr>
<tr>
<td>Thermal Conductivity through Thickness (1000°C)</td>
<td>~ 20 W/m·K (EOL)</td>
<td>~ 7.5 W/m·K (BOL)</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>~ 500 /Ωm (under irradiation, EOL value)</td>
<td>~ 500 /Ωm (before irradiation)</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>300 MPa</td>
<td>300 MPa</td>
</tr>
<tr>
<td>Trans-laminar Shear Strength</td>
<td>-</td>
<td>200 MPa</td>
</tr>
<tr>
<td>Inter-laminar Shear Strength</td>
<td>-</td>
<td>44 MPa</td>
</tr>
<tr>
<td>Maximum allowable tensile Stress</td>
<td>Not used*</td>
<td>Unknown*</td>
</tr>
<tr>
<td>Max. Allowable Temperature (Irradiation Swelling basis)</td>
<td>~ 1000 °C</td>
<td>~ 1000 °C</td>
</tr>
<tr>
<td>Maximum Allowable Interface Temperature with breeder</td>
<td>~ 1000°C (flowing)</td>
<td>~ 800°C (static)</td>
</tr>
<tr>
<td>Min. Allowable Temperature (Thermal conductivity basis)</td>
<td>~ 600 °C</td>
<td>~ 600 °C</td>
</tr>
<tr>
<td>Cost</td>
<td>$400/kg</td>
<td>~ 10 times larger</td>
</tr>
</tbody>
</table>

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Blanket Concept D: SiC/SiC - LiPb Self-Cooled

Design Scheme - Banana shaped Modules (poloidal Cross-Section)
Blanket Concept D: SiC/SiC - LiPb Self-Cooled

Design Scheme – Banana shaped Modules (Horizontal Cross-Section)
Blanket Concept D: SiC/SiC - LiPb Self-Cooled

Design Scheme – Banana shaped Modules (Outboard Module cross-section)
Banana shaped Module Replacement Procedure (through vertical ports)
Blanket Design Point

- segment: SiC\textsubscript{f}/SiC box acting as Pb-17Li container, 2 mm W protection
- use of 3D (industrial) SiC\textsubscript{f}/SiC 3D, extensive use of brasing
- Pb-17Li: \(T_{\text{inlet/outlet}}\) 700°C/1100°C (\(\text{div: } 600/990°C\)), max. speed \(\sim 4.5 \text{ m/s}\)
- dimensions outboard (front) segments: 5 modules \(h=8\text{m}, w=0.3\text{m}, \text{thk}=0.3\text{m}\)
- High T Shield: Pb-17Li-cooled WC, SiC\textsubscript{f}/SiC structures (energy recovered)
- Low T Shield: He-cooled WC with B-steel structures (as for VV)

Main Analyses Results

- Neutronics: \(TBR = 1.12\) (0.98 blankets, 0.125 divertor, 0.015 HT shield)
- Thermal results: \(T_{\text{max}} \sim 1100°C\) (if \(\lambda =20 \text{ W/mK}, \text{thk. FW } 6 \text{ mm}\))
- Acceptable stresses (see criteria details) for Hydr. pressure = 0.8 MPa
- Acceptable MHD pressure drops
- 1 independent cooling circuit for divertor, 4 for blanket, \(\varepsilon = 61 \% \) \(P_{\text{ef}}/P_{\text{fus}}\)
- \(T\)-extraction performed on the cold leg (Pb-17Li renewal \(\sim 1100\) times/day)
Blanket Concept D: SiC/SiC - LiPb Self-Cooled

Scheme of the LiPB External Circuits–Banana shaped Modules

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Main Blanket R&D Issues

Short Term Concepts
(for models A, B, AB)

- Further development of EUROFER (irrad.)
- Further development of structures manufacturing process (HIP, welds, etc…)
- Supporting systems, collectors and piping routes, remote mounting/dismantling
- Interaction LiPb/water & DWT (A)
- Tritium Management and Control (A, AB, B at lower extend)
- Permeation Coatings (A and AB) (irrad.)
- LiPb compatibility with EUROFER (A, AB)
- Ceramic and Be behavior under irradiation, T-inventory in Be (B)
- Pebbles beds behavior (B)

Promising on-going R&D

Medium Term Concept (model C)

- SiC/SiC related issues: FCI design (out of the main body), irradiation, compatibility LiPb
- MHD: modeling of 3D inertial flow in expansion
- ODS: fabrication of ODS plated FW, irradiation
- Heat Exchanger Technology for High T LiPb
- T-recovery and purification (high LiPb flowrate)
- Integration aspects as for Short Term concepts

Long Term Concept (model D)

- SiC/SiC related issues requiring structural functions: irradiation (thermal conductivity, burn-up, lifetime), manufacturing (joints, pipe connections), reliability, modeling, compatibility with very high v & T LiPb
- MHD: modeling of 3D inertial flow in expansion
- T-recovery and purification (high LiPb flowrate)
- Heat Exchanger Technology and other components for High T LiPb
- Integration aspects as for Short Term concepts
PPCS Proposed Divertor Concepts

Main Functions *(ref. others speakers)*

- To control Plasma Boundary Conditions
- To divert magnetic lines to extract ashes and other impurities from the plasma

Vertical Targets are submitted to:

- very high heat fluxes (up to 15 MW/m²)
- interaction with plasma ions/neutrals

Vertical Targets Designs

- studied only for ITER, performances TBD
- Additional requirements in a Power Plant: account for neutron irradiation (~10 dpa/y), use of high T-coolant for acceptable power conversion efficiency, lifetime, …

W-alloy appears to be the only acceptable armor material *(interaction with plasma)*
PPCS Divertor: Water-cooled concepts

Low-temperature concept
- $T_{\text{inlet}} = 150^\circ\text{C}$
- Pressure: 4 MPa

Main features
- Derived from ITER divertor studies
- W-alloy monoblocks
- CuCrZr tubes
- OFHC compliance layer
- CuCrZr Temp. limited to 400°C

Performances
- Heat flux up to 15 MW/m²
High-temperature concept

$T_{\text{outlet}} = 325^\circ\text{C}$
Pressure : 15.5 MPa

Main features

- derived from low-T concept
- W-alloy monoblocks
- EUROFER tubes
- Papyex compliance layer
- Thermal barrier in the front part

Performances

Heat flux up to 15 MW/m2
PPCS Divertor: Helium-cooled concepts

Target-Plate Modular concept
- $T_{\text{inlet}} = 600^\circ C$
- $T_{\text{outlet}} \approx 680^\circ C$
- He P: 10 MPa

Main features
- W-alloy tiles
- W-alloy & ODS-steel structures

Performances
- Heat flux 10 MW/m^2

Divertor cartridge (RAFM)
- Divertor target plates with modular thermal shield (W alloy)
- Dome and structure (ODS RAFM)
Principle of the target plate modular concept

1. High flux components
2. Thimble
3. Structure with manifolds
4. Tile
Conceptual designs the vertical target and He-flow path

Various design principles:
- HETS (ENEA)
 Jet impingement
- HEMP/HEMS (FZK)
 Flow promoter (pin, slot arrays)
PPCS Divertor: Helium-cooled concepts

Materials & Temp. Windows

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>Min Temp.</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiles</td>
<td>W</td>
<td>tbd (600°C) DBTT</td>
<td>2500°C Melting temp. 3410°C</td>
</tr>
<tr>
<td>High heat flux structure</td>
<td>W-alloy</td>
<td>600°C DBTT</td>
<td>1300°C re-crystallisation</td>
</tr>
<tr>
<td>(high P He-containment)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure and manifolds</td>
<td>W-alloy ODS, ...</td>
<td>600°C DBTT</td>
<td>1300°C re-crystallisation 700-750°C strenght limits</td>
</tr>
</tbody>
</table>

Design Point

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HETS</td>
<td>35</td>
<td>600-669</td>
<td>10</td>
<td>30</td>
<td>~ 30</td>
<td>0.063</td>
</tr>
<tr>
<td>HEMP/HEMS</td>
<td>16</td>
<td>600-679</td>
<td>10</td>
<td>6.0</td>
<td>~ 30</td>
<td>0.11</td>
</tr>
</tbody>
</table>

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
PPCS Divertor: LiPb-cooled (SiC/SiC) concept

Very high-T concept

- $T_{\text{outlet}} = 1000^\circ\text{C}$
- Low pressure (MHD)

Main features

- Derived from ARIES-ST studies
- W-alloy tiles
- High velocity LiPb in the toroidal direction (to limit MHD)
- SiC/SiC thin structures (R&D)

Performances

- Heat flux up to ~5 MW/m2
PPCS Proposed Divertor Concepts - Summary

Surface heat-flux in a reactor: TBD
15 MW/m² ➔ 10 ➔ 5 (long term) ??

Water-cooled Concepts

1 - Low-Temp. (as ITER, 150°C)
✓ Known manufacturing (as ITER)
✓ Achieve heat flux of 15 MW/m²
✓ Lifetime of Cu-alloy under irradi. TBD
✓ Deposited Power not used for Power conversion ➔ low reactor efficiency
 ➔ Low R&D but low performances

2 - High-Temp. (as WCLL, 325°C)
✓ Achieve heat flux of 15 MW/m²
✓ Lifetime of Papyex & th. Barrier, especially under irradiation TBD
✓ Manufacturing of interface TBD
 ➔ Significant R&D for the steel/W joint

He-cooled Concepts
✓ Achieve heat flux of 10 MW/m² (or more)
✓ Allow high T He-coolant (high efficiency)
✓ Avoid use of water with He-cooled blankets
✓ Development of W-alloy and ODS-steel manufacturing processes TBD
✓ Behavior of W-alloy under irradiation TBD
✓ Exp. demonstration of P-drops and heat transfer
✓ Joint W-alloys/steel TBD
 ➔ Significant R&D on Materials

LiPb-cooled Concepts
✓ Interesting concept if used jointly to the SCLL blankets, same R&D long term issues (SiC/SiC structures), reliability, modeling, compatibility with very high v & T LiPb TBD
✓ MHD: modeling of 3D inertial flow in expansion TBD
✓ Low achieved heat flux : 5 MW/m², large progress expected in divertor physics TBD
 ➔ Very large R&D (including physics)

L. Giancarli, The PPCS In-Vessel Components Concepts, Erice Summer School, July 26 – August 1, 2004
Overall Conclusions

- **Breeding Blankets**: a major new technological challenge for Fusion towards DEMO
 - Five blanket lines considered in the EU PPCS studies after a selection among the different possible options & materials combinations
 - The blanket concepts corresponding to three of these lines (Water-cooled LiPb, He-cooled Ceramic/Be pebble beds, He-cooled LiPb) requires technologies which can be developed for DEMO (short term). In particular, several mock-ups of the two He-cooled concepts will be tested in ITER.
 - The short term concepts show an acceptable efficiency (30-40%). Major design uncertainties are linked with reactor integration issues (module attachment, pipes routes, connection/disconnection, blanket coverage)
 - Medium and long-term concepts (Dual-Coolant and LiPb Self-cooled SiC/SiC structures) show large attractiveness by higher development risk

- **Divertor**: a major technological improvement from ITER towards DEMO
 - Design and R&D performed for ITER. Additional requirements for DEMO and a Power Plant have to be taken into account. Possible solutions have been evaluated with EU (PPCS). Results will be used as a basis for launching appropriate R&D.