Review of Project Goals

Farrokh Najmabadi
UC San Diego
Some Observations…

- **Goal:** Minimize the time for fielding fusion energy in large scale
 - Objective driven as opposed to Device driven approach.
 - Trying to do the Next Step (EDemo, …) faster and therefore, with a lower extrapolation from today, makes the extrapolation between the Next Step and commercial larger and may delay large-scale deployment of fusion back.

- “Bigger” is the enemy of “Faster”
 - Compare the time for fielding ITER with that of the previous generation of tokamaks!

- **Questions:** Can we divide what needs to be done among several smaller (i.e., cheaper) devices/facilities?

- **Premise:** Cheaper devices can be fielded faster and can operate in parallel. They reduce the overall risk. More options can be examined.

- **Issues:** 1) Integration Risk, 2) Feasibility/cost of smaller devices?
Integration Risk Can Be Minimized

- Integration risk can be minimized if the device is divided along “Physical” boundaries as opposed to scientific/technical disciplines.
- MFE devices naturally divide along the in-vessel components:
 - **Plasma** only sees the first < 1mm of the in-vessel components and the EM field. (ITER results are applicable to power plant although no power producing blanket exists!)
 - **Power technologies** (all components between plasma and coils) see only neutron, heat, and EM loads (and the first <1mm also sees particle loads). It does not matter if the plasma is ignited or not!

Questions: Can we get “prototypical” neutron, heat particle, and EM loads in a smaller (i.e., “cheaper”) device?
- Developing power technologies is a “wider” mission than blanket or component testing.
We need to evaluate carefully if smaller/cheaper devices can deliver “prototypical” fusion conditions?

- Define what needs to be done in order to certify fusion power technologies and what are the prototypical neutron heat, particle, and EM loads!
 - Probably only “tokamak-based” machine would be able to deliver prototypical conditions.
- Several proposal are on the table for small, low-power, driven devices:
 - ST-based
 - Conventional aspect ratio tokamaks with normal-conducting coils.
- These proposals (and others) should be evaluated and compared with the same “physics/technology” rules to assess if this option is feasible.
Mid-term ARIES Pathway Project Goals

- Define top-level Requirements (qualitative and quantitative) of the next step facility (fusion power technology demonstration and certification facility).
- System Code: Understand trade-offs to provide a range of embodiments for fusion power plants (and thus Demos)
 - Trade-offs (visualization)
 - Develop costing model/object functions for the next-step facility.
 - Operate in optimizer mode.
- Interim report
 - Top-level requirements
 - Systems code trade-off studies (of power plants)
 - What is new in our approach!
Example: EU Issue list

<table>
<thead>
<tr>
<th>Plasma performance</th>
<th>Issue</th>
<th>Approved devices</th>
<th>ITER</th>
<th>IFMIF</th>
<th>DEMO Phase 1</th>
<th>DEMO Phase 2</th>
<th>Power Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disruption avoidance</td>
<td>2</td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Steady-state operation</td>
<td>2</td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Divertor performance</td>
<td>1</td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Burning plasma (Q>10)</td>
<td></td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Start up</td>
<td>1</td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Power plant plasma performance</td>
<td>1</td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Enabling technologies</td>
<td>Superconducting machine</td>
<td>2</td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Heating, current drive and fuelling</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Power plant diagnostics & control</td>
<td>1</td>
<td>2</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Tritium inventory control & processing</td>
<td>1</td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Remote handling</td>
<td>1</td>
<td>2</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Materials, Component performance & lifetime</td>
<td>Materials characterisation</td>
<td></td>
<td>3</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Plasma-facing surface</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>FW/blanket/divertor materials</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>FW/blanket/divertor components</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Self sufficiency</td>
<td>1</td>
<td></td>
<td>3</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Final Goal</td>
<td>Licensing for power plant</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Electricity generation at high availability</td>
<td>4</td>
<td></td>
<td>3</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output:
- 1: Will help to resolve the issue
- 2: May resolve the issue
- 3: Should resolve the issue
- 4: Must resolve the issue

Input:
- r: Solution is desirable
- R: Solution is a requirement

UKAEA September 2007 (revised/improved version of original table in UKAEA FUS 521, 2005).
A “Faster Track” Approach to Large Scale Fusion Deployment

- ITER and Satellite tokamaks
 - Construction
 - Complete ITER Ops Phase 1

- Materials Development and Certification
 - EVEDA
 - 80 dpa
 - Prelim. 150 dpa

- Power Technology Development and Certification

- US Demo/Prototype

- Commercial

- Can be made faster by accelerating IFMIF and fielding Fusion Power Technology Development devices earlier.