The ARIES Compact Stellarator Study: Introduction & Overview

Farrokh Najmabadi and the ARIES Team

UC San Diego

ARIES-CS Review Meeting
October 5, 2006
PPPL, Princeton, NJ

Electronic copy: http://aries.ucsd.edu/najmabadi/TALKS
ARIES Web Site: http://aries.ucsd.edu/aries/
For ARIES Publications, see: http://aries.ucsd.edu/
Goals of the ARIES-CS Study

- Can compact stellarator power plants be similar in size to advanced tokamak power plants?
 - Reduce aspect ratio while maintaining “good” stellarator properties.
 - Include relevant power plants issues (α particle loss, Divertor, Practical coils).
 - Identify key areas for R&D (what areas make a big difference)

- Impact of complex shape and geometry
 - Configuration, assembly, and maintenance drives the design
 - Complexity-driven constraints (e.g., superconducting magnets)
 - Complex 3-D analysis (e.g., CAD/MCNP interface for 3-D neutronics)
 - Manufacturability (feasibility and Cost)

- First design of a compact stellarator power plant
 - Design is pushed in many areas to uncover difficulties
Goal: Stellarator Power Plants Similar in Size to Tokamak Power Plants

- Multipolar external field -> coils close to the plasma
- First wall/blanket/shield set a minimum plasma/coil distance (~2m)
- A minimum minor radius
- Large aspect ratio leads to large size.

Need a factor of 2-3 reduction

Approach:
- **Physics**: Reduce aspect ratio while maintaining “good” stellarator properties.
- **Engineering**: Reduce the required minimum coil-plasma distance.
Physics Optimization Approach

NCSX scale-up

Coils
1) Increase plasma-coil separation
2) Simpler coils

High leverage in sizing.

Physics
1) Confinement of α particle
2) Integrity of equilibrium flux surfaces

Critical to first wall & divertor.

New classes of QA configurations

Reduce consideration of MHD stability in light of W7AS and LHD results

MHH2
1) Develop very low aspect ratio geometry
2) Detailed coil design optimization

“Simpler” coils and geometry?

SNS
1) Nearly flat rotational transforms
2) Excellent flux surface quality

How good and robust the flux surfaces one can “design”?
A series of coil design with $A_c = \langle R \rangle / \Delta_{\text{min}}$ ranging 6.8 to 5.7 produced.

- Large increases in B_{max} only for $A_c < 6$.
- α energy loss is large ~18%.

$A_c = 5.9$

For $\langle R \rangle = 8.25 \text{m}$:
- $\Delta_{\text{min}}(c-p)=1.4 \text{ m}$
- $\Delta_{\text{min}}(c-c)=0.83 \text{ m}$
- $I_{\text{max}}=16.4 \text{ MA @6.5T}$
A bias is introduced in the magnetic spectrum in favor of B(0,1) and B(1,1)
✓ A substantial reduction in α loss (to $\sim 3.4\%$) is achieved.

✓ The external kinks and infinite-\(n\) ballooning modes are marginally stable at 4\% β with no nearby conducting wall.
✓ Rotational transform is similar to NCSX, so the same quality of equilibrium flux surface is expected.

Optimization of NCSX-Like Configurations: Improving α Confinement & Flux Surface Quality
Two New Classes of QA Configurations

II. MHH2
- Low plasma aspect ratio ($A_p \sim 2.5$) in 2 field period.
- Excellent QA, low effective ripple (<0.8%), low α energy loss ($\leq 5\%$).

III. SNS
- $A_p \sim 6.0$ in 3 field period. Good QA, low ϵ-eff (< 0.4%), α loss $\leq 8\%$.
- Low shear rotational transform at high β, avoiding low order resonances.
Minimum Coil-plasma Stand-off Can Be Reduced By Using Tapered-Blanket Zones

\[\Delta \geq 179 \text{ cm} \]

\[\Delta_{\text{min}} = 130.7 \text{ cm} \]
Resulting power plants have similar size as Advanced Tokamak designs

- Trade-off between good stellarator properties (steady-state, no disruption, no feedback stabilization) and complexity of components.
- Complex interaction of Physics/Engineering constraints.
Resulting power plants have similar size as Advanced Tokamak designs

- Major radius can be increased to ease engineering difficulties with a small cost penalty.

<table>
<thead>
<tr>
<th></th>
<th>SPPS</th>
<th>ARIES-CS</th>
<th>ARIES-AT</th>
<th>ARIES-RS</th>
</tr>
</thead>
<tbody>
<tr>
<td><R>, m</td>
<td>14.0</td>
<td>7.75</td>
<td>5.2</td>
<td>5.5</td>
</tr>
<tr>
<td><B₀>, T</td>
<td>5.0</td>
<td>5.7</td>
<td>5.9</td>
<td>8.0</td>
</tr>
<tr>
<td><β></td>
<td>5.0%</td>
<td>5.0%</td>
<td>9.2%</td>
<td>5.0%</td>
</tr>
<tr>
<td>FPC Mass, tonnes</td>
<td>21,430</td>
<td>10,962</td>
<td>5,226</td>
<td>12,679</td>
</tr>
<tr>
<td>Reactor Plant Equip. (MS)</td>
<td>1,642</td>
<td>900</td>
<td>1,386</td>
<td></td>
</tr>
<tr>
<td>Total Direct Cost (MS)</td>
<td>2,633</td>
<td>1,757</td>
<td>2,189</td>
<td></td>
</tr>
</tbody>
</table>

Graph:
- 0.1 COE (1992 mills/kWh)
- B_max/2 (T)
- B_axis (T)
- ρ_{n,wall,max} (MW/m²)
Basic Parameters of ARIES-CS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major radius</td>
<td>7.75 m</td>
</tr>
<tr>
<td>Minor radius</td>
<td>1.7 m</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>4.5</td>
</tr>
<tr>
<td>Average plasma density</td>
<td>$3.6 \times 10^{20}/m^3$</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>5.7 keV</td>
</tr>
<tr>
<td>β</td>
<td>5.0 %</td>
</tr>
<tr>
<td>B_0</td>
<td>5.7 T</td>
</tr>
<tr>
<td>B_{max}</td>
<td>15.1 T</td>
</tr>
<tr>
<td>Fusion power</td>
<td>2.4 GW</td>
</tr>
<tr>
<td>Avg./max. wall load</td>
<td>2.6/5.3 MW/m²</td>
</tr>
<tr>
<td>Alpha loss</td>
<td>5 %</td>
</tr>
<tr>
<td>TBR</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Complex plasma shape and plasma-coil relative position drives many engineering systems
First ever 3-D modeling of complex stellarator geometry for nuclear assessment using CAD/MCNP coupling

- Detailed and complex 3-D analysis is required for the design
 - Example: Complex plasma shape leads to a large non-uniformity in the loads (e.g., peak to average neutron wall load of 2).

Distribution of Neutron wall load

![Graph showing the distribution of neutron wall load with toroidal and poloidal angles.]
Coil Complexity Impacts the Choice of Superconducting Material

- Strains required during winding process is too large.
 - NbTi-like (at 4K) $\Rightarrow B < \sim 7-8$ T
 - NbTi-like (at 2K) $\Rightarrow B < 9$ T, problem with temperature margin
 - Nb$_3$Sn $\Rightarrow B < 16$ T, Conventional technique does not work because of inorganic insulators

Option 1: Inorganic insulation, assembled with magnet prior to winding and capable to withstand the heat treatment process.

Option 2: conductor with thin cross section to get low strain during winding. (Low conductor current, internal dump).

Option 3: HTS (YBCO), Superconductor directly deposited on structure.
Coil Complexity Dictates Choice of Magnet Support Structure

- It appears that a continuous structure is best option for supporting magnetic forces.
- Superconductor coils wound into grooves inside the structure.
- Net force balance between field periods.
- Absence of disruptions reduces demand on coil structure.
Port Assembly: Components are replaced Through Ports

- Modules removed through three ports using an articulated boom.

Drawbacks:
- Coolant manifolds increase plasma-coil distance.
- Very complex manifolds and joints.
- Large number of connect/disconnects.
Dual coolant with a self-cooled PbLi zone and He-cooled RAFS structure

- Originally developed for ARIES-ST, further developed by EU (FZK), now considered as ITER test module
- SiC insulator lining PbLi channel for thermal and electrical insulation allows a LiPb outlet temperature higher than RAFS maximum temperature

Self-cooled PbLi with SiC composite structure (a al ARIES-AT)
- Higher-risk high-payoff option
A highly radiative core is needed for divertor operation

- Heat/particle flux on divertor was computed by following field lines outside LCMS.
 - Because of 3-D nature of magnetic topology, location & shaping of divertor plates require considerable iterative analysis.

- Divertor module is based on W Cap design (FZK) extended to mid-size (~ 10 cm) with a capability of 10 MW/m²

- Top and bottom plate location with toroidal coverage from -25° to 25°.
Summary of the ARIES-CS Study

Goal 1: Can compact stellarator power plants similar in size to advanced tokamak power plants?
- Reduce aspect ratio while maintaining “good” stellarator properties.
- Include relevant power plants issues (α particle loss, divertor, practical coils).
- Identify key areas for R&D (what areas make a big difference)

Results:
- Compact stellarator power plants can be similar in size to advanced tokamaks (The best “size” parameter is the mass not the major radius).
- α particle loss can be reduced substantially (how low is low enough?)
- A large number of QA configurations, more desirable configurations are possible. In particular, mechanism for β limit is not known. Relaxing criteria for linear MHD stability may lead to configurations with a less complex geometry or coils.
Goal 2: Understand the impact of complex shape and geometry

A. Configuration, assembly, and maintenance drives the design

✓ A high degree of integration is required
✓ Component replacement through ports appears to be the only viable method.
✓ Leads to modules that can be fitted through the port and supported by articulated booms.
✓ Large coolant manifold (increase radial build), large number of connects and disconnects, complicated component design for assembly disassembly.

B. Complexity-driven constraints (e.g., superconducting magnets)

✓ Options were identified. Base case requires development of inorganic insulators.
Summary of the ARIES-CS Study

Goal 2: Understand the impact of complex shape and geometry

C. Complex 3-D analysis

✓ 3-D analysis is required for almost all cases (not performed in each case).
✓ CAD/MCNP interface for 3-D neutronics, 3-D solid model for magnet support, ...

D. Manufacturability (feasibility and Cost)

✓ Feasibility of manufacturing of component has been included in the design as much as possible.
✓ In a large number of cases, manufacturing is challenging and/or very expensive.
Exploration and Optimization of Compact Stellarators as Power Plants -- Motivations

Timeliness:
- Initiation of NCSX and QPS experiments in US; PE experiments in Japan (LHD) and Germany (W7X under construction).
- Progress in our theoretical understanding, new experimental results, and development of a host of sophisticated physics tools.

Benefits:
- Such a study will advance physics and technology of compact stellarator concept and addresses concept attractiveness issues that are best addressed in the context of power plant studies, e.g.,
 - α particle loss
 - Divertor (location, particle and energy distribution and management)
 - Practical coil configurations.
- NCSX and QPS plasma/coil configurations are optimized for most flexibility for scientific investigations at PoP scale. Optimum plasma/coil configuration for a power plant (or even a PE experiment) will be different. Identification of such optimum configuration will help define key R&D for compact stellarator research program.